000-python-basics-reference.md 1/7/2020

Python basics reference for beginners

This summary is not intended as a teaching guide but a reminder on how the basic features of Python
work. It is intended for use after having done an introduction to Python.

My detailed Python notes can be found at https://pbaumgarten.com/python

Last updated: January 2020 by P.Baumgarten

Print and input

To print text to screen:

print("Hello world!'")

To print a variable to screen:

name = "Han Solo"

record = 12

print(f"{name} completed the Kessel run in {record} parsecs")
notice the 'f' in front of the first set of quotes

To ask the user for input

name = input("What is your name? ") ## Input saved as text string
num = int(input("Type an integer between 1 and 100: ")) ## Input saved as an integer
double = num * 2

print(f'Hello {name}, double your number is {double}")

Sometimes you need to format the variables you are printing.

val =
print(f"With leading spaces to make it 4 characters wide is {val:4}") # prints ' 12'
print(f"With leading zeros to make it 4 characters wide is {val:04}") # prints '0012'
val = 3.14

print(f"To 2 decimal places is {val:.2f}") # prints '3.14'

print(f"To 5 decimal places is {val:.5f}") # prints '3.14000'

print(f"With spaces to make it 8 characters wide with 3 decimal places is {val:8.3f}")
print(f"With zeros to make it 8 characters wide with 3 decimal places is {val:08.3f}")

1/12

https://pbaumgarten.com/python

000-python-basics-reference.md 1/7/2020

Numbers

Python has two types of numbers: integers and floats. Integers are "whole numbers" without decimals,
floats are the name given to numbers that contain decimals.

To get the result of a mathematical calculation, put the equation on the right of an equal sign, and the
variable you wish the answer saved in on the left of the equal sign.

Arithmetic

a =

b =

c=a+b # addition c == 106

c=a-b»b # subtraction c == 94

c=axb # multiplication c == 400

c=a/b # division c == 16.66667

c=al//b # integer division c == 16 (how many times does 6 go into 100)
c=a%h # modulus remainder ... c == 4 (ie: remainder of 100 divided by 6)
c=axxb # exponent c == 1000000000000 (ie: 1076)

Geometry and trigonometry

import math # add this line to the top of your program for the math functions to work
J - returns value of pi with as much precision as available to your computer

. - returns the hypotenuse for a right angled triangle with side lengths a

and b

J - returns the sin() for an angle provided in radians
. - returns the cos() for an angle provided in radians
. - returns the tan() for an angle provided in radians
. - returns the inverse sin() for a ratio. answer provided in radians
J - returns the inverse cos() for a ratio. answer provided in radians
. - returns the inverse tan() for a ratio. answer provided in radians
J - convert angle from radians to degrees
J - convert angle from degrees to radians

Example: How long is the hypotenuse of a triangle if the adjacent side is 20, and the angle is 45
degrees?

import math

adjacent =
angle =
hypotenuse = adjacent / math.cos(math.radians(angle))
print(hypotenuse) # prints 28.284...
Converting

new_integer = int("10") # convert string "10" to integer 10
new_float = float("3.14") # convert string "3.14" to float 3.14
new_string = str() # convert integer 42 to string "42"

2/12

000-python-basics-reference.md 1/7/2020

Strings
Assign a text string a value

mytext = "Hello"

Searching strings

mytext = "To infinity and beyond!"
if "infinity" in mytext:

print("Yes, the word infinity is in the string")
else:

print("No, the word infinity is not in the string")

Get substrings

e String positions start from 0. That is, the first letter is position O, the second letter is position 1
and so forth.

¢ When asking for a range of characters, Python will give you a substring that includes the starting
position number, but not including the end position number.

original_text = "To infinity and beyond!"

new_text = original_text[:2] ## Get from start up to not including position 2, ie: "To"

new_text = original_text[16:] ## Get from position 16 to end, ie: "beyond!"

new_text = original_text[3:11] ## Get from position 3 up to not position 11. ie: "infinity"
Changing strings

original_text = "To infinity and beyond!"

new_text = original_text. lower() ## == "to infinity and beyond!"

new_text = original_text.upper() ## == "TO INFINITY AND BEYOND!"

new_text = original_text.title() ## == "To Infinity And Beyond!"

new_text = original_text.swapcase() ## == "t0 INFINITY AND BEYOND!"

new_text = original_text.ljust(30) ## == "To infinity and beyond! "

new_text = original_text.rjust(30) #H =" To infinity and beyond!"

new_text = original_text.replace(" ", "—-") ## == "To—infinity——and——-beyond!"

Query content of string

text = "To infinity and beyond!"

num = len(text) ## get length of string ... num == 23

num = text.count(" ") ## count spaces in string ... num == 3

num = text.index("o") ## position of first 'o' in the string ... num == 1
num = text.rindex("o") ## position of last 'o' in the string ... num == 19
result = text.isnumeric() ## does it contain only numbers?

result = text.isalpha() ## does it contain only letters?

result = text.islower() ## is it all lowercase?

result = text.isupper() ## is it all uppercase?

result = text.istitle() ## is it all title case?

result = text.isspace() ## is it all spaces?

3/12

000-python-basics-reference.md

If statements

An "if* statement defines code that will run if the answer to a question is
have Python to compare two or more values to see if they obey a rule. Examples of comparisions we

can

if
if
if
if
if
if
if
if
if
if
if

ask...

il == 13

1 ==0:

Ilall - Ilall:
Ilall == IIAII:
Ilall !: IIZII:
1> 0:

-1 > 0:

2 >= 3:

-3 < -1:

3 < 1:

2 <= 3:

##
##
#i#t
##
##
##
#i#t
##
##
##
#i#t

Is
Is
Is
Is
Is
Is
Is
Is
Is
Is
Is

1 equal to 1

1 equal to ©

Ilall equal .to Ilall

Ilall equa'l- .to IIAII

"a" not equal to "z"

1 greater than 0

-1 greater than 0

2 greater or equal to 3
-3 less than -1

3 less than 1

2 less or equal to 3

We can also query string content such as:

text = "May the force be with you!"

if

el

"force" in text:

print("The force is strong with this string")

se:

print("The force is not with this string")

We can also join multiple queries together using the

a
if

if

You

a
if

el
el

el

= int(input("Enter a number: "))

a >0 and a < 10:

print("You entered a number between @ and 10")

a<0ora->10:

. True
. False
. True
. False
. True
. True
False
False
. True
. False
. True

. To ask a question,

or oI key words such as...

print("You entered a number less than @ or greater than 10")

can join multiple 11 queries together using

= int(input("Enter a number: "))

a > 10:

print("a is bigger than 10")

if a > 0:

print("a is bigger than @ but not bigger than 10")

if a ==
print("a is zero")
se:

print("a is less than 0@")

Remember:

Use a double equal sign to compare two values! A single equal is used to set the value rather

than ask if they are a match.
End your "question" with a colon and indent the code to run when the comparison is True.
The statement will keep asking questions of the various

After one item is

, it will skip the rest of the options available.

4/12

until it finds one that is

000-python-basics-reference.md 1/7/2020

While loops
The loop works very similar to the if statement. Any question you can ask of an statement
can be used in a loop. The difference being that so long as something is , it will keep

running the same indented section of code. An example:

stop_at = int(input("Enter a number for me to count up to: "))
num = 1
while num <= stop_at:
print(num)
num = num + 1
print("The end!")

Another example...

import random
secret = random.randint(1,99) # generate a random number between 1 and 99

guess = int(input("Guess my secret number between 1 and 99: "))
while guess != secret:
if guess > secret:
guess = int(input("Too high. Guess again: "))
elif guess < secret:
guess = int(input("Too low. Guess again: "))

print("Correct!")

For loops

You can also use a for-loop when you know the number of iterations you wish to loop in advance.

limit = int(input("Enter a number for me to count up to: "))

for number in range(limit): # will loop from @ to limit-1
print(number)

print("The end!")

You can also specify a starting number other than zero. For instance

for number in range(50, 100): # will loop from 50 to 99
print(number)
print("The end!")

You can even specify that it counts downwards, or using an interval different to one by specifying a
third parameter to the function.

for number in range(100, 0, -1): # will loop from 100 to 1
print(number)
print("The end!")

5/12

000-python-basics-reference.md 1/7/2020

Lists and for-loops

A list is a means of storing multiple values to one variable name. Other programming languages call
these 'arrays'.

Example lists:

primes = [1, 2, 3, 5, 7, 11, 13, 17, 19, 23]
VOWelS = [IIAII’ IIEII' IIIII' IIOII' IIUII]
starwars = ["Luke", "Han", "Leah", "Obi-wan", "Yoda", "Rey", "Finn"]

Lists have many of the same features of strings (which is really just a list of characters) to query them
and get sub-parts from.

size = len(starwars) ## How many items in the starwars list

first = starwars[0] ## Get the first item in the starwars list

second = starwars[1] ## Get the second item in the starwars list

last = starwars[-1] ## Get the last item in the starwars list
starwars.append("Darth Vadar") ## Add an item to the starwars list

starwars.sort() ## Sort the list into alphabetical or numerical order
smallest = min(primes) ## Get the smallest value from the list

largest = max(primes) ## Get the largest value from the list

You can query if an item exists inside a list

starwars = ["Luke", "Han", "Leah", "Obi-wan", "Yoda", "Rey", "Finn"]

if "Luke" in starwars: ## Is "Luke" in the starwars list?
print("Luke is in starwars")

else:
print("Luke is not in starwars")

We can also use a loop to process every item in a list

starwars = ["Luke", "Han", "Leah", "Obi-wan", "Yoda", "Rey", "Finn"l]
for character in starwars:
print(f"{character} is a person in Starwars")

6/12

000-python-basics-reference.md 1/7/2020

Defining functions

A function allows us to define a block of code as our own Python command to use. One useful
purpose of this is it allows you to reuse code without having to continually copy-and-paste it. This then
means you can also modify/improve it by only editing it once. Very useful.

Use the keyword to define a new function, provide the name you wish to assign, and then
parenthesis and a colon. Indent the code to include in the function and then end the intendation when
the function specific code ends.

Create a function...
def a_useless_function
print("This is a fairly useless function")

Execute the function 3 times...
a_useless_function()
a_useless_function()
a_useless_function()

You can provide parameters to functions so their behaviour can be customised each time. A simple
example...

def area_of_triangle
area = * base *x height
return area # send this value back to the code that ran the function

print(area_of_triangle(p)) # prints 75.0
print(area_of_triangle())) # prints 42.0
print(area_of_triangle(;)) # prints 11.0

7/12

000-python-basics-reference.md 1/7/2020

Files

Read entire file as a string

with open('"countries.txt", "r") as f: # Open file for reading
content = f.read() # Load entire file into 1 large string
print(content) # Do something with the string

Read entire file as a list, one string per line

with open("countries.txt", "r") as f: # Open file for reading
content = f.read() # Load entire file into 1 large string
lines = content.splitlines() # Split into lines

for line in lines:
print(line)

Writing a text file - Using just a string

content = "My exciting material"
with open("stuff.txt", "w") as f: # Open file stuff.txt for writing
f.write(content) # Write this string to the file

Writing a text file - Using a list of strings

content = ['Leah', 'Obi-wan', 'Yoda', 'Rey', 'Finn', 'bb-8']
save = "\n".join(content) # Convert list to a string, adding a new-line character
after each string
with open("people.txt", "w") as f: # Open file people.txt for writing
f.write(save) # Write this string to the file

Add to a file without replacing the original content

content = "More exciting material"
with open("stuff.txt", "a") as f: # Open file stuff.txt for appending
f.write(content) # Add this string to the file

File opening modes:

e | for reading
e v for writing (erasing it if it exist)
e o for appending (add to file without erasing previous content)

Remember
e The statement will close the file when you unindent
J behaves like

e [or greater predictability, cast everything to strings before writing to files

8/12

000-python-basics-reference.md 1/7/2020

Exceptions

Generic try/except

¢ Warning the generic exception catch is bad practice and hides bugs. Any unintentional error in
your code (such as a mis-spelling) could cause an exception that results in hours of frustration to
diagnose.

try:
denominator = int(input("Please enter a number: "))
result = 100 / denominator
print(f"100 divided by {denominator} is {result}")
except:
print("I can't do that!")

Try/except checking for specific error types

try:
denominator = int(input("Please enter a number: "))
result = 100 / denominator
print(f"100 divided by {denominator} is {result}")
except ValueError:
print("That wasn't a number")
except ZeroDivisionError:
print("I can't divide by zero")

Generate your own exception

x = 10
if x > 5:
raise ValueError("Not allowed to have a number greater than 5")

9/12

000-python-basics-reference.md 1/7/2020

Dates and times

Creating a datetime

from datetime import datetime

Create a datetime using current computer date & time
now = datetime.now()

Create a datetime with year=2019, month=12, day=25
christmas = datetime(2019, 12, 25)

Create a datetime with year=2019, month=12, day=25, hour=11, minute=00, seconds=00
christmas = datetime(2019, 12, 25, 11, 00, 00)

Create a datetime from a formatted string

birth_text = input('"What is your birthday (write it as dd/mm/yyyy) ?")
birth_date = datetime.strptime(birth_text, "%d/%m/%Y")

Using timestamps (number of seconds since 01/01/1970 00:00 UTC)

from datetime import datetime

Create a timestamp based on current date/time
timestamp = datetime.now().timestamp()

Create a timestamp from existing date/time object
apollo_11 datetime(1969, 7, 20, 20, 17, 40)
timestamp = apollo_11.timestamp() # -14215340.0

Create a datetime from a timestamp
timestamp = 1563958625 # Number of seconds since 01/01/1970 00:00 UTC
july24_2019 = datetime.fromtimestamp(timestamp)

Differences between dates with timede Lta

e timede Lta acceptsany combination of the following options: days=0, seconds=0,
microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0

from datetime import datetime, timedelta

apollo_11 = datetime(1969, 7, 20, 20, 17, 40)
now = datetime.now()

Create a timedelta automatically by subtracting two dates
diff = now — apollo_11
print(f"Apollo 11 landed {diff.days} days ago!")

Create a new date by adding a timedelta to a date
ten_thousand = apollo_11 + timedelta(days=10000)
print(f"10'000 days after Apollo 11 was { tenthousand.strftime("%d %B, %Y") }")

Create pretty date/time strings using strftime()

pretty_date_1 apollo_11.strftime("%A, %d %B, %Y") # 'Sunday, 20 July, 1969'
pretty_date_2 = apollo_11.strftime("%d/%m/%Y") # '20/07/1969'
pretty_time = apollo_11l.strftime("%H:%M:%S") # '20:17:40'

10/12

000-python-basics-reference.md 1/7/2020

Date based codes

%a - Weekday abbreviated (eg: Sun)

%A - Weekday full name (eg: Sunday)

%d - Day number in month (zero padded eg: 02)
%b - Month name abbreviated (eg: Jan)

%B - Month full name (eg: January)

%m - Month number (zero padded eg: 01)

%y - Year without century (zero padded)

%Y - Year with century (zero padded)

Time based codes

%! - Hour 12 hour clock (zero padded)
%H - Hour 24 hour clock (zero padded)
%M - Minute (zero padded)

%S - Second (zero padded)

%p - AM or PM

Get parts of date/time

from datetime import datetime
apollo_11 = datetime(, ,) ,)

1969

y = apollo_11l.year #

m = apollo_11.month # 7 (July)

d = apollo_11.day # 20

hr = apollo_11.hour # 20 (8:00pm in 24 hr time)
mi = apollo_11l.minute # 17

se = apollo_11.second # 40

wkd = apollo_11.weekday() # 6 (@=Monday so 6 is Sunday)

Replace parts of a date using

from datetime import datetime

date_1 = datetime(, 6,)

date_2 = date_l.replace(year =) # Replace the year
print(date_2) # 20/06/2019

11/12

000-python-basics-reference.md 1/7/2020

Dictionaries

Create an empty dictionary
person = { } # Curly braces instead of the square brackets used for lists

Set values to your dictionary
person["given_name"] = "Paul"
person["family_name"] = "Baumgarten"

Get elements from the dictionary

print(person["given_ame"])

print(person["family_name"])

Add / modify elements in the dictionary
person["email"] = "pbaumgarten@isl.ch"
person["website"] = "https://pbaumgarten.com"

Remove an element from the dictionary
del person["website"]

Loop through all the elements of the dictionary

for key,val in person.items():
print(f"field {key} has value {val}")

Convert a dictionary/list structure into a JSON string (useful for saving to a file)

import json

Convert to JSON text string
json_text = json.dumps(person)

Save it to a file

with open("person.txt", "w") as f:
f.write(json_text)

Convert a JSON string into a dictionary/list structure (usefil for loading from a file)

import json

Load from a file

with open('person.txt", "r") as f:
content = f.read()

Convert string text to dictionary/list structure
person = json.loads(content)

12/12

