
README.md 1/5/2020

1 / 22

Unit: Images, memes and face filters

Summary
You will use the Python programming language to
explore how apps like Instagram and Snapchat
create their various filters and effects on your
photos.

This unit assumes some existing knowledge of
Python basics.

Last updated: 02/01/2020

Unit information

MYP item This unit

Key concept Communication

Related
concepts Adaptation, form

Global context Personal and cultural expression

Statement of
inquiry

Technology allows us to adapt our form when communicating with different
audiences to more creatively express ourselves

Assessment
objectives A (inquiring & analysing), B (devising ideas), D (evaluating)

Lesson overviews
12 lessons as follows:

1. Photo basics: Use camera to take photos, open photos from disk, save photos to disk
2. Photo manipulation: Crop, resize, rotate, photo in photo
3. Simple filters: Black and white, re-colour, blur
4. Create your own memes
5. Object detection: faces, bodies, facial features
6. Complete the face filter demo
7. Design your own face filter
8. Build your own face filter
9. Evaluate your own face filter

Website
The website for this unit is https://pbaumgarten.com/myp-design/image-editing/

https://pbaumgarten.com/myp-design/image-editing

README.md 1/5/2020

2 / 22

0. Prequisites

Python installed
This assumes you have a recent version of Python installed, typically at least version 3.6

If you don't have it, go to https://wwww.python.org and download it.

When running the installer, make sure you turn on the option to "Add Python to PATH"

I have a video walk through of the process for installing Python and VS Code at

https://pbaumgarten.com/python/install/, or
https://youtu.be/-R6HFLp7tTs

Libraries required
Once you have Python installed, open the command prompt and run the following

pip install Pillow ImageToolsMadeEasy

If you get a permissions error with the above, try it again with the --user switch as follows

pip install --user Pillow ImageToolsMadeEasy

Basic Python knowledge
This guide assumes a basic familiarity with Python. I have written a quick recap designed for a one
hour lesson should you need it. It is available at:

https://pbaumgarten.com/python/recap/

If you need a more detailed introduction to Python I have a set of detailed tutorials on my website.
Each lesson contains detailed notes, videos and practice exercises. Each lesson is roughly an hour in
length with 9 lessons in "the basics" (though only the first 5 are required for this tutorial).

https://pbaumgarten.com/python/

https://wwww.python.org/
https://pbaumgarten.com/python/install/
https://youtu.be/-R6HFLp7tTs
https://pbaumgarten.com/python/recap/
https://pbaumgarten.com/python/

README.md 1/5/2020

3 / 22

1. Photo basics
The following section requires the following imports

from PIL import Image
import ImageTools

Use camera to take a photo image
A video walkthrough of getting this working in VS Code is available here
https://www.youtube.com/watch?v=Lj_mHL3EA_Y or via the QR code.

To take a photo, you create an instance of the camera object, and then you
can use the built in .take_photo() function to trigger the camera and
return an Image object. It may take a second or two for this line to execute
depending on the speed of your built in camera.

Once you have your Image object (called img in my example below), it has
built in commands that you can use to save it to a PNG or JPG image file,
and/or open a preview window to display it.

A basic example

camera = ImageTools.Camera()
img = camera.take_photo()
img.save("my photo.jpg", "jpeg")
img.show()

Note the save() command requires two parameters. The first is the filename, the second is a
predefined code indicating we want to save as a JPEG format. It must be spelt with the 'e' in
'jpeg'. You can also use 'png' and a bunch of others.

Open an image
If you already have an existing PNG or JPG you wish to open...

The image must be in the same folder as your Python project.

img = Image.open("my picture.jpg")
img.show()

https://www.youtube.com/watch?v=Lj_mHL3EA_Y

README.md 1/5/2020

4 / 22

Save an image
As already shown above section, once you have an Image object it has a built in save command. It
can save in PNG or JPG format. It will be saved into your project folder.

img = Image.open("my picture.png") # alternatively use the camera
img.save("myphoto new copy.png", "png")
img.save("myphoto another copy.jpg", "jpeg")

Get image information
The Image object will advise you the width and height of your image in pixels, and can inform you of
the colour mode for your image. The img.size attribute returns both the width and height so to
access it use two variables like...

width, height = img.size
mode = img.mode

The mode refers to the colour scheme in use. We will use this mode information in later lessons to
switch between different colour modes. The ones you are most likely to have use for are...

1 (1-bit pixels, black and white, stored with one pixel per byte)
L (8-bit pixels, black and white)
P (8-bit pixels, mapped to any other mode using a color palette)
RGB (3x8-bit pixels, true color)
RGBA (4x8-bit pixels, true color with transparency mask)
CMYK (4x8-bit pixels, color separation)
HSV (3x8-bit pixels, Hue, Saturation, Value color space)

The following is a handy one line print statement I use to print a summary of my Image information
after taking a photo or opening a new image.

print(f"Image info: Size {img.size[0]} x {img.size[1]}, colour mode {mode}")

Your task/s
Successfully get the Python Image system working
Successfully open an existing PNG or JPG photo on your computer and have Python open it for
viewing
Obtain the information for your existing photo. What width, height and mode does Python say it
has?
Successfully have the camera take a photo
Obtain the information for your camera photo. What width, height and mode does Python say it
has?
Successfully save the photo from your camera. Upload it to your portfolio.

README.md 1/5/2020

5 / 22

2. Simple photo manipulation
The following section requires the following imports

from PIL import Image
import ImageTools

Crop
The image object has a built in crop command that requires a set of 4 values denoting the pixel
boundaries of the rectangle to crop the image down to. The 4 values are left-edge, top-edge, right-
edge, and bottom-edge.

You can either supply the boundaries as a separate variable, or embed them within the crop
command as shown. Note the extra set of parenthesis if you use the embedding approach. In either
method you can use actual integers, or variables with integer values.

In both cases the original Image, img, is untouched. The cropped version of the image has been put
into the cropped_img object in these examples.

Method 1
img = Image.open("my picture.png") # alternatively use the camera
boundaries = (200, 50, 400, 200)
cropped_img = img.crop(boundaries)

Method 2
img = Image.open("my picture.png") # alternatively use the camera
cropped_img = img.crop((200, 50, 400, 200))

Resize
The Image object also contains a .resize() command that requires a 2 value set with the new
width and height in pixels that you want to use. Again, the original image is untouched. You can use
variables containing integer values, or actual integer numbers.

Example using variables

img = Image.open("my picture.png") # alternatively use the camera
resized_img = img.resize((new_width, new_height))
img.show()

Example using integer numbers

img = Image.open("my picture.png") # alternatively use the camera
resized_img = img.resize((300, 200))
img.show()

README.md 1/5/2020

6 / 22

Rotate

To rotate an image requires a number of degrees (anti-clockwise). While usually you may use 90, 180
or 270 you are not restricted to these.

By default the rotated image will be the same dimensions as the original. This means if you supply a
portrait photo that is 800 x 600 pixels and rotate it 90 degrees, it will rotate and then appear cropped
because the 800 pixel wide portion won't fit in the 600 pixel height you are putting it in. To overcome
this, set expand=True and Python will enlarge (or shrink) the new image as required.

If there is any blank space in the new image (such as if you are rotating on 45 degrees and will end up
with a triangle in each corner), you can specify the colour to use to fill the blank space with the
fillcolor command.

Example 1
rotated_img_1 = img.rotate(90, expand=True, fillcolor="#00ffff")
Example 2
rotated_img_2 = img.rotate(45, expand=True, fillcolor="#ff00ff")

Paste one image into another image
To paste one image into another image, simply use the .paste command as shown. You provide it
the image to insert, and a set of (x,y) coordinates for where you'd like to overlay it into the original
image.

img1 = Image.open("my picture.png") # alternatively use the camera
img2 = Image.open("my other picture.png")
img1.paste(img2, (100,100))
img1.show()

Create a new, blank image
The .new() command needs two parameters: The first specifies the mode for this image, and the
second is a set of (width,height) size dimensions.

Example

img = Image.new("RGBA", (3000, 2000))

You can create new blank images as the target to paste a bunch of other images into if you wish.

README.md 1/5/2020

7 / 22

Your task/s
Take a photo of someone with your camera
Take a crop of their face from that photo (approximately 100x180 pixels)
Resize the original photo to the same size as the crop (approximately 320x180 pixels)
Create a new blank image wide enough for both the crop and shrunk version of the original
(approximately 420x180 pixels)
Paste the crop photo and the resized/shrunk photo into the blank image
Save and upload the result to your portfolio

An example of what you are aiming for...

README.md 1/5/2020

8 / 22

3. Simple filters
The following section requires the following imports

from PIL import Image, ImageFilter, ImageEnhance
from PIL import ImageFont
import ImageTools

Convert to black and white or grey scale

The easiest way to convert to black and white or greyscale is to convert the image mode.

camera = ImageTools.Camera()
img = camera.take_photo() # alternatively open an image file
bw = img.convert(mode="1") # black and white
bw.show()

Greyscale works the same, we just set the mode to L.

img = Image.open("my picture.png") # alternatively use the camera
grey = img.convert(mode="L") # greyscale
grey.show()

Apply an image filter
There are seven types of filters built in to the Python Image object. They are

ImageFilter.BLUR
ImageFilter.CONTOUR
ImageFilter.DETAIL
ImageFilter.EDGE_ENHANCE
ImageFilter.EMBOSS
ImageFilter.SHARPEN
ImageFilter.SMOOTH

The following is an illustration of the effect provided by each...

README.md 1/5/2020

9 / 22

)

An example of using the ImageFilter to blue is provided below. To use one of the other filters, simply
replace the ImageFilter.BLUR with the relevant filter you wish to use.

img = Image.open("my picture.png") # alternatively use the camera
new_img = img.filter(ImageFilter.BLUR)
new_img.show()

Apply an Image Enhancer
Similar but separate to the ImageFilters are also Image Enhancers. These are used to adjust the
brightness, contrast, sharpness or color saturation within an image.

The following is an illustration of the effect provided by each...

)

To increase the brightness of an image, we supply a number above 1.0 to the enhance function, to
decrease the brightness we supply a number below 1.0 to the enhance function. You can go as high
or low as you like.

Increase brightness
img = Image.open("my picture.png") # alternatively use the camera
new_img = ImageEnhance.Brightness(img).enhance(1.5)
new_img.show()

Decrease brightness
img = Image.open("my picture.png") # alternatively use the camera
new_img = ImageEnhance.Brightness(img).enhance(0.5)
new_img.show()

To enhance the contrast, the key line would be...

new_img = ImageEnhance.Contrast(img).enhance(0.5)

README.md 1/5/2020

10 / 22

To enhance the sharpness use...

new_img = ImageEnhance.Sharpness(img).enhance(0.5)

Finally, to enhance colour saturation, use...

new_img = ImageEnhance.Color(img).enhance(0.5)

Your task/s
What are the limits to the various filters and enhancers?
What happens if you reuse a filter on an already filtered photo? eg: Applying blur on an already
blurred image? Compare the before, after-first and after-second photos.

README.md 1/5/2020

11 / 22

4. Create a meme
To create a meme you usually need a couple of things: A great photo or image, and a witty caption.

I'm fortunate enough that one of the students at my previous school created a meme about me that
wasn't of the 'this teacher sucks' variety, so I'll happily share it here as a sample...

We've covered how you can manipulate photos and images, but what can we do about the caption?

Python helps us out here by providing tools to draw and add text to our images.

Caution: If you are going to create a meme featuring someone else in the school - get their permission
first (celebrates are fair game though... but remember this is a school assignment, and school
expectations on appropriateness apply)

The following section requires the following imports...

from PIL import Image, ImageDraw, ImageFilter, ImageEnhance, ImageFont
import ImageTools

Draw a line on an image
To do any drawing with the Image tools, we need to crate an ImageDraw.Draw object that is linked
to our image. That is step 1 in the code below.

The draw.line() function requires the two sets of x,y coordinates representing the start and end
point for the line and a fill color. Optionally you can include a width (if you leave it out it will default to 1
pixel wide). This is step 2 in the sample code.

camera = ImageTools.Camera()
img = camera.take_photo()
Step 1 - Create a draw object that is linked to the img
draw = ImageDraw.Draw(img)
Step 2 - Use the draw object's line function

README.md 1/5/2020

12 / 22

x1,y1=100,150
x2,y2=400,300
draw.line((x1,y1,x2,y2), fill=(255,255,0), width=1)
img.show()

Other than mems, drawing lines can also have other uses. Here is one I created that draws gridlines
on an image - a helpful way of finding coordinates for different features I might want to .crop() or
replace with a .paste(). Every 100 pixels this draws a thick yellow line, and every 20 pixels a thin
yellow line.

filename = input("What image do you want to open?")
img = Image.open(filename)
width,height = img.size
print(f"Image size is {width} x {height} pixels")
draw = ImageDraw.Draw(img)
for x in range(width):
 if x % 100 == 0:
 draw.line((x,0,x,height), fill=(255,255,0), width=3)
 elif x % 20 == 0:
 draw.line((x,0,x,height), fill=(255,255,0), width=1)
for y in range(height):
 if y % 100 == 0:
 draw.line((0,y,width,y), fill=(255,255,0), width=3)
 elif y % 20 == 0:
 draw.line((0,y,width,y), fill=(255,255,0), width=1)
img.show()

Draw a rectangle on an image
Drawing a rectangle is very similar to drawing a line. Again we provide two sets of coordinates,
effectively representing the top-left corner and the bottom-right corner of the rectangle. (if you want a
rectangle that is not parallel with the edge you'll have to use rotate on it later).

The following example will draw four rectangles around the outer edge of our photo, with the effect of
creating a black border around our photo that is 50 pixels wide.

camera = ImageTools.Camera()
img = camera.take_photo()
width, height = img.size
Step 1 - Create a draw object that is linked to the img
draw = ImageDraw.Draw(img)
Step 2 - Use the draw object's rectangle function
draw.rectangle((0,0,width,50), fill="#000000", width=1)
draw.rectangle((0,0,50,height), fill="#000000", width=1)
draw.rectangle((width-50,0,width,height), fill="#000000", width=1)
draw.rectangle((0,height-50,width,height), fill="#000000", width=1)
img.show()

Draw an ellipse on an image
The ellipse function works by providing it the coordinates of a rectangle, [left, top, right,
bottom], and it will then draw an ellipse that touches all the sides of the rectangle. For example, to
draw an ellipse that is the size of our image...

camera = ImageTools.Camera()
img = camera.take_photo()
width, height = img.size
Step 1 - Create a draw object that is linked to the img

README.md 1/5/2020

13 / 22

draw = ImageDraw.Draw(img)
Step 2 - Use the draw object's rectangle function
draw.ellipse((0,0,width,height), outline="#ffff00", width=5)
img.show()

Change an individual pixel
What is the point of being able to read or update an individual pixel? Because where there is one,
there is many. Knowing how to modify one gives you the capicty to run the funcitonality through some
loops and change a whole bunch of pixels. It is the most fine-detail level of control you can have.

To read the colour values for an individual pixel...

camera = ImageTools.Camera()
img = camera.take_photo()
width, height = img.size
for y in range(height):
 for x in range(width):
 col = img.getpixel((x,y))
 print(f"The colour at {x},{y} is {col}")

To set the colour values for an individual pixel...

use the Image.putpixel((x,y), colour_code) function for example...

img = Image.new("HSV", (255, 255))
width, height = img.size
for x in range(width):
 for y in range(height):
 img.putpixel((x,y), (x,y,255))
img.show()

Write text on an image
Firstly to draw text on your Image you are going to need to pick a font. I recomment using
https://fonts.google.com/, find one you like (that's free) and download the font. It will probably
download as a ZIP file. Viewing the file icon in Windows Explorer, right click on it and find the option to
"decompress" or "expand" so you get the TTF file(s). Copy your TTF files into your project folder in
order to proceed.

In addition to creating an ImageDraw.Draw() object, we also need to create an
ImageFont.truetype() object which will contain the font information from the TTF file we just
downloaded.

The draw.text() command brings it all together. It requires four parameters: the location as (x,y)
pixel coordinates for where to place the top left of the text, the string containing the caption text you
wish to write, a colour value, and a link to the font object.

See this for a working example...

camera = ImageTools.Camera()
img = camera.take_photo()
w,h = img.size
person = input("Who is in this photo?")
Generate the text we will place on the Image
caption = "This is a photo of "+person

https://fonts.google.com/

README.md 1/5/2020

14 / 22

Nominate a colour
yellow = "#ffff00"
Determine the (x,y) location to place the text
location = (20, h-50)
Create a drawing object linked to our image
draw = ImageDraw.Draw(img)
Create a drawing object linked to our image
font = ImageFont.truetype("Roboto-Light.ttf", 48)
Finally, bring it all together and render the text to our Image
draw.text(location,caption,yellow,font=font)
img.show()

Note: If you wish to centre or right align your text, check the hint suggested here
https://stackoverflow.com/a/1970930/10971929

Your task
Create a meme! Combine a photo, maybe put a border around it, add some text, go viral!

Upload your meme to your portfolio.

Reminder: If you are going to create a meme featuring someone else in the school - get their
permission first (celebrates are fair game though... but remember this is a school assignment, and
school expectations on appropriateness apply)

https://stackoverflow.com/a/1970930/10971929

README.md 1/5/2020

15 / 22

5. Object detection
The following section requires the following imports

from PIL import Image, ImageDraw, ImageFilter, ImageEnhance
from PIL import ImageFont
import ImageTools

Detect a face
The algorithms involved to detect a face are actually not very complex (relatively speaking). It doesn't
even require what would properly be considered as artifical intelligence. Faces (and other features) can
be detected based on mathematical pattern recognition. Fortunately for you, this is a task so
commonly used, you don't need to know any of the maths involved, you can just use an existing
library. The ImageTools library you are using will do this for you (which is then using another library
called OpenCV).

In fact it is now simply a case of needing the ImageTools.get_faces() command as shown...`

camera = ImageTools.Camera()
img = camera.take_photo()
faces = ImageTools.get_faces(img, "haarcascade_frontalface_default.xml")
print(faces)

The second parameter, "haarcascade_frontalface_default.xml", is the name to a file that
must be in our project folder. It is the file that contains the training data of what a face looks like. The
function will load this file and use the information in it to determine if there is a face in the Image you
supply. You can download this file here...

https://github.com/opencv/opencv/tree/master/data/haarcascades

When you run this, assuming the image contains a face, the print command will output a set of
numbers like this...

[[537 183 321 321]]

You should hopefully recognise this as a Python list. More correctly it is a list of lists (note the double
sets of square brackets). This is the top-left-x-cordinate, the top-left-y-coordinate, width, and height
for a face found in the Image.

If there is more than one face, you will get one set of coordinate information for each face. Such as this
which came from a photo with three people in it...

[[280 313 208 208]
 [1354 330 217 217]
 [674 454 196 196]]

Once we have the cordinate information we can then use the crop tool to create new Images
containing just the faces...

https://github.com/opencv/opencv/tree/master/data/haarcascades

README.md 1/5/2020

16 / 22

counter = 0
camera = ImageTools.Camera()
img = camera.take_photo()
faces = ImageTools.get_faces(img, "haarcascade_frontalface_default.xml")
for each individual face in the list of faces...
for a_face in faces:
 # extract the left, top, width and height locations of a face
 x,y,w,h = a_face
 a_face_img = img.crop((x,y,x+w,y+h))
 a_face_img.save(f"face_{counter:2}.jpg", "jpg")
 a_face_img.show()
 counter = counter + 1

Or we could use a drawing tool to put rectangles highlighting the faces found in the original image...

camera = ImageTools.Camera()
img = camera.take_photo()
draw = ImageDraw.Draw(img) # create the drawing object
faces = ImageTools.get_faces(img, "haarcascade_frontalface_default.xml")
for each individual face in the list of faces...
for a_face in faces:
 # extract the left, top, width and height locations of a face
 x,y,w,h = a_face
 # draw a rectangle around the face
 draw.rectangle((x,y,x+w,y+h), outline="#ffff00", width=5)
show the final image, highlighting each face
img.show()

Or, we can use it to have some fun such as making an Instagram or Snap style face-filter (next lesson).

Your task/s
What range of angles and lighting/shadow will work?
What is the minimum size a face needs to be to be detected?
How many faces at once can it reliablity detect? (ensure each face is over the minimum size for
this to be reliable)
Is there any bias in this algorithm? Experiment with different gender, racial and ethnic faces.
Does this algorithm have weaknesses, and if so in what way? (see note below)

Note regarding bias: The algorithm we are using is one that is very widely used for facial recognition
systems around the world. But pattern recognition algorithms, such as this one, are not perfect. They
are only as good as the programmers that wrote them, and the programmers used to build it. For
instance some facial recogition algorithms have been known to show bias in being more reliable at
detecting people with lighter skin instead of darker skin. This creates enormous challenges for equity
and equality when even the "neutral" computer can be biased.

README.md 1/5/2020

17 / 22

6. Complete the face filter demo

We now have all the pieces necessary for an Instagram/Snap style face filter. In short we want to

Take a photo
Load our "face filter" image containing the cartoon eyes/nose/ears/whatever
Detect any faces in the photo
Obtain the location for all the faces in the photo
Paste our "face filter" image over the top of each face in the photo (resizing it to match each face
first)
Done! Sounds easy enough right?!

Take a photo
camera = ImageTools.Camera()
img = camera.take_photo()
Load our "face filter" image containing the cartoon eyes/nose/ears/whatever
face_filter = Image.open("face-filter-demo.png")
Detect any faces in the photo
faces_coordinates = ImageTools.get_faces(img, "haarcascade_frontalface_default.xml")
print(faces_found)
For all the faces detected in the image....
for a_face in faces_found:
 # Obtain the location for this individual face
 x,y,w,h = a_face
 # Resize the face filter to match this face
 resized_face_filter = face_filter.resize((w,h))
 # Paste the face filter into the main photo
 img.paste(resized_face_filter, (x,y))
Show and save the end result
img.show()
img.save("masterpeice.png", "png")

You've probably discovered your first attempt is not perfect. It will need some tweaking. You may have
to adjust the coordinates for the paste, or adjust the amount of the resize.

Be aware that any calculations made to adjust your numbers should still end up with whole integers.
For instance if you took a size of (232,135) and decided to stretch the height by a factor of 1.2, that
would give you decimals but part pixels don't exist. So you would have to use the int() function like
.resize((w, int(h*1.2)))

README.md 1/5/2020

18 / 22

Your task/s
Use an existing PNG with animal cartoon features before attempting to create your own. I have a
collection of a few available here:

https://github.com/paulbaumgarten/paulbaumgarten/tree/master/myp-design/image-
editing/filters

Alternatively, use a Google Image search with terms such as "face filter png transparent"

Upload your code, before photo and after photo to your portfolio.

https://github.com/paulbaumgarten/paulbaumgarten/tree/master/myp-design/image-editing/filters

README.md 1/5/2020

19 / 22

7. Design your own effcets, memes and filters
Enough of following the examples, time to build something of your own from scratch.

Your task/s
You should design a two or three different programs. Your goal is to apply a range of the
techniques we have learnt in this unit. At the basic level this could include crop, resize, paste,
and the built in filter and enhance functions. You should also have a program that uses the
drawing functions, and finally a program to use the face recognition functions.
Draw accurate mock ups of what you'd like the before and after images to resemble.
Add annotation to your mock ups to describe which method you are planning to use.
Scan/photograph your mockups and upload them to your portfolio for this unit.

README.md 1/5/2020

20 / 22

8. Build your own effects, memes and filters

Your task/s
Use Photoshop, Illustrator or any other preferred tool to create your blank face filter images.
Use Python to build your photo effect and filter programs that you designed.
Tweak to optimise it as best as possible
Test your filters on a variety of people
You should have your programs save the before and after of key sample photos. Upload the
relevant before and after photos to your portfolio.
Upload the code for each tool you created to your portfolio.

Pro-tip
It is suggested to use code that will auomatically generate filenames that are unique, so you can take
lots of photos when testing without worrying about losing any (of course nothing to stop you deleting
some later).

The following will use the date and time to create a unique filename (provided you don't take more
than one photo per second).

Note: that it requires you to add from datetime import datetime to your import statements.
An example follows...

Create a unique filename string based on the date and time for example 20191223-202613
filename = datetime.now().strftime("%Y%m%d-%H%m%s")
Create the camera object
camera = ImageTools.Camera()
Take 100 photos
for i in range(100):
 # Take a photo
 img = camera.take_photo()
 # Do something interesting with the photo, such as convert to black and white
 bw = img.convert(mode="1")
 # Save both images using the special filename prefix
 img.save(filename+"-before.png", "png")
 bw.save(filename+"-after.png", "png")

README.md 1/5/2020

21 / 22

9. Evaluate your effects, memes and filters
How successful were you? Address the following questions and provide the response to your
portfolio.

Your task/s
Task 1: How did you test each photo effect/filter program you wrote? Your answer should
include:

How you ensured it functioned as a basic program without generating errors
How it worked on a range of photos

Task 2: How successful were you with your photo effect/filter programs? Your answer should
include:

In which cases did it work well, in which cases did it not work ideally?
What thoughts do you have as to what caused the difference in each case?

Task 3: Given more time, what changes would you make? Why?
Task 4: Through tools such as Instagram and Snapchat there is now an abundance of easily
accessible filters such as the ones we have created. Briefly comment on how you think this is
affecting society. Is it potentially damaging to individual self-worth or societial harmony, or is that
just fear mongering? Justify your opinion.

README.md 1/5/2020

22 / 22

References
1. Color modes from https://pillow.readthedocs.io/en/5.1.x/handbook/concepts.html
2. Haar cascades from https://github.com/opencv/opencv/tree/master/data/haarcascades

https://github.com/opencv/opencv/tree/master/data/haarcascades

