
README.md 1/5/2020

1 / 29

Create a video game

Summary
Who doesn't love a good, fun computer game? This unit will give you the opportunity to learn how it is
done within Python and to have a go at creating your own.

Unit information

MYP item This unit

Key concept tba

Related concepts tba

Global context tba

Statement of inquiry tba

Assessment
objectives

A (inquiring & analysing), B (devising ideas), C (creating the solution), D
(evaluating)

Lesson overviews
12 lessons as follows:

1. Pygame basics
2. Shapes, colour and text
3. Keyboard events
4. Mouse events
5. Playing sound
6. Using images
7. Detecting collisions
8. Code a project sampler
9. Design modifications to your project

10. Code modifications to your project
11. Evaluate your project

Website
The website for this unit is https://pbaumgarten.com/myp-design/game-making/

https://pbaumgarten.com/myp-design/game-making/

README.md 1/5/2020

2 / 29

0. Pre-requisites

Libraries required
Once you have Python installed, open the command prompt and run the following

pip install pygame pygamemadeeasy Pillow ImageToolsMadeEasy

If you get a permissions error with the above, try it again with the --user switch as follows

pip install --user pygame pygamemadeeasy Pillow ImageToolsMadeEasy

Basic Python knowledge
This guide assumes a basic familiarity with Python. I have written a quick recap designed for a one
hour lesson should you need it. It is available at:

https://pbaumgarten.com/python/recap/

If you need a more detailed introduction to Python I have a set of detailed tutorials on my website.
Each lesson contains detailed notes, videos and practice exercises. Each lesson is roughly an hour in
length with 9 lessons in "the basics" (though only the first 5 are required for this tutorial).

https://pbaumgarten.com/python/

https://pbaumgarten.com/python/recap/
https://pbaumgarten.com/python/

README.md 1/5/2020

3 / 29

1. Pygame basics

Cordinate system
Pygame is a graphics system for Python. The screen is divided into pixels. You use sets of pixel
coordinates to tell Python where to draw shapes, place text or images etc.

Pygame coordinates start with the top-left of the screen being (x=0,y=0).

The x-axis increases as you move to the right.

The y-axis increases as you move down – this is different to the way you do it in Maths so be aware of
that!

README.md 1/5/2020

4 / 29

Hello Pygame
All Pygames in my tutorials are built from this basic template. Please divide your games into these
sections to make it easier to build and for me to assist you with any problems.

import pygame, time, random
from pygame.locals import *
from pygamemadeeasy import *

pygame.init()
window = pygame.display.set_mode((500,500)) # set screen width,height
fps = pygame.time.Clock()

#********** Declare colors, images, sounds, fonts, variables **********
BLACK = (0,0,0)
quit = False
""" insert your code here """

#********** Main game loop starts **********
while not quit:
 window.fill(colors.black) # Reset the screen to black background
 #********** Process events **********
 for event in pygame.event.get():
 print(event)
 if event.type == QUIT:
 quit = True
 elif event.type == KEYDOWN:
 if event.key == K_ESCAPE:
 quit = True
 """ insert your code here """

 #********** Perform calculations **********
 """ insert your code here """

 #********** Draw graphics **********
 """ insert your code here """

 #********** Update screen **********
 pygame.display.update() # Actually does the screen update
 fps.tick(25) # Run the game at 25 frames per second

#********** Game over **********
pygame.quit()

The comments in the above program are important. They are recommendations on where you want to
place the code for each part of your game. It's a good idea to follow the above as your "master
template". Copy and paste it as the starting point each time you want to begin a new Pygame project.

To briefly explain a few commands:

The import lines at the top are telling Python to load other code saved elsewhere (in this case
the code that makes pygame exist)
pygame.display.set_mode((500,500)) is setting the width and height of your game
window.
window is a variable that we use to draw things onto the screen
Pygame will only actually draw onto your screen when it hits the
pygaame.display.update() command.
window.fill(BLACK) will erase everything on screen and fill the screen with the specified
color, in this case black.
fps.tick(25) is saying we want the game to run at 25 frames per second

README.md 1/5/2020

5 / 29

2. Shapes, colour & text

Drawing basic shapes
An optional video walkthrough for this is at
https://www.youtube.com/watch?v=Dp9BvEFX8Tc or use the QR code

The following are the basic commands for drawing simple geometric shapes.

Rule for a line
pygame.draw.line(window, color, (x1, y1), (x2, y2), thickness)
Example
pygame.draw.line(window, colors.blue, (50, 60), (50, 160), 10)

Rule for a rectangle
pygame.draw.rect(window, color, (x, y, width, height), thickness
)
Example
pygame.draw.rect(window, colors.green, (52, 160, 120, 40))

Rule for a circle
pygame.draw.circle(window, color, (x, y), radius, thickness)
Example
pygame.draw.circle(window, colors.white, (110, 110), 40, 10)

Rule for an ellipse (oval)
pygame.draw.ellipse(window, colour, (x, y, width, height),
thickness)
Example
pygame.draw.ellipse(window, colors.fuchsia, (220, 100, 80, 40))

Rule for a multipoint polygone
pygame.draw.polygon(window, colour, ((x1,y1), (x2,y2), (x3,y3),
etc) , thickness)
Example
pygame.draw.polygon(window, colors.red, ((20,20), (52,60),
(172,60), (200,20)), 5)

(If thickness is left out, the shape will be filled in)

Coordinates are always provided as a set of (X,Y) values including their own set of parenthesis. That's
why when you look at the sample for pygame.draw.line below you can see that the from-coordinate is
(50,60) and the to-coordinate is (50,160).

To have a go drawing some basic shapes:

Start with a copy of the basic master template from the previous page.
Add the following code AFTER the line BLACK = (0,0,0)

BLUE = (0,0,255)
GREEN = (0,255,0)
WHITE = (255,255,255)
RED = (255,0,0)
YELLOW = (255,255,0)
PINK = (0xFF, 0x65, 0xFF)

Add the following code AFTER the window.fill(BLACK) and BEFORE the
pygame.display.update()

https://www.youtube.com/watch?v=Dp9BvEFX8Tc

README.md 1/5/2020

6 / 29

pygame.draw.line(window, BLUE, (50, 60), (50, 160), 10)
pygame.draw.rect(window, GREEN, (52, 160, 120, 40))
pygame.draw.circle(window, WHITE, (110, 110), 40, 10)
pygame.draw.rect(window, YELLOW, (220, 100, 80, 40))
pygame.draw.ellipse(window, PINK, (220, 100, 80, 40))
pygame.draw.polygon(window, RED, ((20,20), (52,60), (172,60), (200,20)), 5)

Using colour
Colours are created using a 3 number variable, COLORNAME = (red, green, blue), where each colour
value is between 0 and 255.

BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (227, 27, 27)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)

Colours can also be written using hexadecimal numbers. This is handy as frequently colour charts will
give you a colour in that form.

For instance, the colour PINK might be #ff99cc. To use that as a Python colour variable, you would
write it as:

PINK = (0xFF, 0x99, 0xCC)

To get a colour at a given pixel

pixel_colour = window.get_at((x , y))

A good online resource for picking colours is https://htmlcolorcodes.com

Displaying text
An optional video walkthrough to assist with some of the content of this topic
https://www.youtube.com/watch?v=mfRnTDJbM68 or use the QR code

There are two steps to displaying text within a Pygame Python program:

Create the font variable
Convert the text to an image that is then drawn on the screen

The following walks you through the two steps with the program we have
been creating over the last few pages.

1. Create the font variable. Create a font variable before your game loop. Typically I would add it
just after all the colours are defined.

ARIAL = pygame.font.SysFont("Arial", 60)

https://htmlcolorcodes.com/
https://www.youtube.com/watch?v=mfRnTDJbM68

README.md 1/5/2020

7 / 29

2. Convert the text to an image and draw it to screen. Inside your loop, before the
pygame.display.update(), add two lines to render your text to a bitmap, and then blit that
bitmap to the screen window.

label = ARIAL.render("Hello Python!", 1, (255,255,255))
window.blit(label, (300, 50))

The (300,50) in the window.blit command is the coordinates of where to draw the text. The output
should look like:

Watch out - A common mistake students make is not realising the information for the
`render()` function must be a string. So, for example, if you have an integer variable
called `score` that you want to be displaying on screen, remember to convert it to a
string first using `str(score)`.

Your task/s
Draw a simple landscape scene? Perhaps a house with a triangle shaped roof, or a stick
person?
Use different colours, shapes and add some text to your landscape scene.
Upload a screen shot of the image, and the Python code, to your portfolio.

README.md 1/5/2020

8 / 29

3. Keyboard events
An optional video walkthrough to assist with some of the content of this topic
https://www.youtube.com/watch?v=16DMTuQW3cY or use the QR code

We have already been using the Pygame event handler without really looking
too much at it. It is the for event in pygame.event.get(). Just like
items in a list, the for loop will run through all the events that have occurred
since the last time the program checked through them. This is how the
program detects and processes keyboard and mouse events.

Let's start by looking at the keyboard.

All keyboard events have an event.type == KEYDOWN or event.type == KEYUP, which
correspond to the time the key is first pressed, and the time it is released. Once we know it is a
keyboard event, we can then check to see the contents of event.key which will tell Python which
key was involved.

For a full list of the event.key codes, see https://www.pygame.org/docs/ref/key.html.

The ones we are going to be concerned with primarily are: K_ESCAPE, K_RETURN, K_SPACE,
K_UP, K_DOWN, K_LEFT, and K_RIGHT.

https://www.youtube.com/watch?v=16DMTuQW3cY

README.md 1/5/2020

9 / 29

Demo 1 - Space bar
Get your template code and add to it as shown in the demo code.

The following demonstration will highlight whether or not the user is pressing the space bar.

Save a copy of the previous program from Displaying Text as a new file.
Create a new variable in the section before the while loop

import pygame, time, random
from pygame.locals import *

pygame.init()
window = pygame.display.set_mode((500,500))
fps = pygame.time.Clock()

Declare colors, images, sounds, fonts, variables
BLACK = (0,0,0)
quit = False
spaceBar = False

Main game loop
while not quit:

 # Process events
 for event in pygame.event.get():
 print(event)
 if event.type == QUIT:
 quit = True
 elif event.type == KEYDOWN:
 if event.key == K_ESCAPE:
 quit = True
 if event.key == K_SPACE:
 spaceBar = True
 elif event.type == KEYUP:
 if event.key == K_SPACE:
 spaceBar = False

 # Perform calculations

 # Draw graphics
 window.fill(BLACK)
 if spaceBar:
 msg = ARIAL60.render("Space bar", 1, GREEN)
 else:
 msg = ARIAL60.render("Space bar", 1, RED)
 window.blit(msg, (300,150))
 pygame.display.update() # Actually does the screen update
 fps.tick(25) # Run the game at 25 frames per second

Loop over, game over
pygame.quit()

README.md 1/5/2020

10 / 29

Demo 2 - Arrow keys
Let's move onto something more useful for a game. This demo will use the arrow keys to move an
object on the screen. While the arrow key is pressed, the object will move; once the key(s) are
released, the movement will stop.

import pygame, time, random
from pygame.locals import *

pygame.init()
window = pygame.display.set_mode((500,500))
fps = pygame.time.Clock()

Declare colors, images, sounds, fonts, variables
BLACK = (0,0,0)
PINK = (0xFF, 0x99, 0xCC)
x = 400
y = 300
movex = 0
movey = 0
quit = False
spaceBar = False

Main game loop
while not quit:

 # Process events
 for event in pygame.event.get():
 print(event)
 if event.type == QUIT:
 quit = True
 elif event.type == KEYDOWN:
 if event.key == K_ESCAPE:
 quit = True
 if event.key == K_UP:
 movey = -20
 if event.key == K_DOWN:
 movey = 20
 if event.key == K_LEFT:
 movex = -20
 if event.key == K_RIGHT:
 movex = 20
 elif event.type == KEYUP:
 if event.key == K_UP or event.key == K_DOWN:
 movey = 0
 if event.key == K_LEFT or event.key == K_RIGHT:
 movex = 0

 # Perform calculations

 # Draw graphics
 window.fill(BLACK)
 x = x + movex
 y = y + movey
 pygame.draw.circle(window, PINK, (x,y), 40, 0)
 pygame.display.update() # Actually does the screen update
 fps.tick(25) # Run the game at 25 frames per second

Loop over, game over
pygame.quit()

README.md 1/5/2020

11 / 29

Your task/s
Get the two demonstration activities to work (do not just copy and paste the code - practice
typing Python code for yourself so you learn how to correct the errors along the way)

README.md 1/5/2020

12 / 29

4. Mouse events
An optional video walkthrough to assist with some of the content of this topic
https://www.youtube.com/watch?v=Ttch-J4ulKM or use the QR code

Mouse events work very similar to keyboard events. They are stored in the
same queue to be processed by the for event in pygame.events.get()
loop.

There are three types of events we can check for:

event.type == MOUSEMOTION
event.type == MOUSEBUTTONDOWN
event.type == MOUSEBUTTONUP

In all three cases, there will be an event.pos value that will indicate the (x,y) location of the mouse
pointer when the event occurred. To illustrate the use of mousemotion, lets make a very simple pong
game where the paddle will be controlled by the mouse. The sections relevant to the mouse motion
event will be highlighted with comments.

https://www.youtube.com/watch?v=Ttch-J4ulKM

README.md 1/5/2020

13 / 29

Demo - Basic pong game

import pygame, time, random
from pygame.locals import *
pygame.init()
window = pygame.display.set_mode((500,500))
fps = pygame.time.Clock()

Declare colors, fonts, images, variables etc
BLACK = (0,0,0)
WHITE = (255,255,255)
ball_x = 250 # Starting position of the ball
ball_y = 250
ball_move_x = random.randint(5,10) # Set a random horizontal speed
ball_move_y = random.randint(5,10) # Set a random vertical speed
paddle_x = 220 # Starting position of the paddle
paddle_y = 470
quit = False

Main game loop
while not quit:
 # Process events
 for event in pygame.event.get():
 if event.type == QUIT:
 quit = True
 elif event.type == MOUSEMOTION: ## The mouse has moved
 paddle_x = event.pos[0] ## We only need the x coordinate of the
mouse position

 # Perform calculations
 ball_x = ball_x + ball_move_x
 ball_y = ball_y + ball_move_y

 ball_hit_zone = Rect(ball_x-10, ball_y-10,20,20)
 paddle = Rect(paddle_x, paddle_y, 60, 20)

 if paddle.colliderect(ball_hit_zone):
 ball_move_y = -abs(ball_move_y)
 if ball_x < 0 or ball_x > 500:
 ball_move_x = -ball_move_x
 if ball_y < 0:
 ball_move_y = -ball_move_y
 if ball_y > 500:
 quit = True
 print("You lost! Game over!")

 # Draw graphics
 window.fill(BLACK)
 pygame.draw.ellipse(window, WHITE, ball_hit_zone, 10)
 pygame.draw.rect(window, WHITE, paddle)
 pygame.display.update()
 fps.tick(25)
pygame.quit()

README.md 1/5/2020

14 / 29

5. Playing sound
Like images, this will assume all your sound files are in your project folder. You can only have one track
of "background" music playing at a time. You can, however, have multiple sound effects at once.

Background music
Playing a background song is dead easy... one command to load it, one command to play. Don’t put
this in your loop! It should go where colours are declared etc.

pygame.mixer.music.load('background.mp3')
pygame.mixer.music.play(-1) # 0 = play once, -1 = loop

Important! - Do not put your pygame.mixer.music.load in your game loop. Every time you run
it you are reloading the file into memory, slowing your system down!

Sound effects
Make sure you only load the sound effect once. You can use it multiple times, but it will chew up your
system memory very quickly if you put the load inside your game loop!

Where you declare your colours etc...

BOUNCE_SOUND = pygame.mixer.Sound('sound-effect.wav'))

When you want the sound to play

BOUNCE_SOUND.play()

Sound effects have to be WAV files.

Your task/s
Spend no more than 10 minutes searching for some good game sound effects.
Remember if you find MP3, you will have to convert them to WAV files. Use an online converter,
or Audacity if it is on your laptop.
Create a new copy of your Pong game (or any other previous Pygame exercise) and add sound
effects to it at key points.

README.md 1/5/2020

15 / 29

6. Using images in Pygame
An optional video walkthrough to assist with some of the content of this topic
https://www.youtube.com/watch?v=2ClnBpKGx7o or use the QR code

Draw an image
Drawing an image file (jpeg or png) is really easy! Only two lines of code
needed. The following assumes your image files are located in your
PyCharms project folder.

Load the image to a variable. Do this only once, typically where you declare
your colours, fonts etc. It is important that your pygame.image.load is not in your game loop.
Every time you run it you are reloading the file into memory, slowing your system down!

IMAGE = pygame.image.load("image.jpg").convert_alpha()

To draw the full image onto the screen, use the blit() command. The coordinates are the top-left
corner of the image on your screen. Do this where you would have used pygame.draaw.rect or
similar.

window.blit(IMAGE, (x, y))

Resize an image
To resize an image before drawing it onto the screen.

picture = pygame.image.load(filename)
picture = pygame.transform.scale(picture, (newWidth, newHeight))

Rotate an image
Will rotate counter-clockwise. Use a negative number to rotate clockwise.
Unless rotating by 90 degree increments, the image will be padded larger to hold the new size. If
the image has pixel alphas, the padded area will be transparent. Otherwise pygame will pick a
color that matches the Surface colorkey or the topleft pixel value.

originalPicture = pygame.image.load(filename)
rotatedPicture = pygame.transform.rotate(originalPicture, 90)

Get colour at pixel

pixel_colour = window.get_at((x , y))

https://www.youtube.com/watch?v=2ClnBpKGx7o

README.md 1/5/2020

16 / 29

Draw part of an image
To only render part of an image onto the screen, you can supply the coordinates of the rectangle
within the image you want to use.

window.blit(IMAGE, (window-x, window-y), (image-x, image-y, image-width, image-height))

Where

window-x, window-y: the coordinates where you want the partial image located on the screen
image-x, image-y: within the image file, this is the top left of the part of the image to include
image-width, image-height: the number of pixels wide and high to include

Animated sprites
An optional video walkthrough to assist with some of the content of this topic
https://www.youtube.com/watch?v=gT0qmgAauT8 or use the QR code

A sprite map is where one image has several icons drawn on it. The idea is
you rotate through the icons to give the appearance of animation.

Sprite maps are easy to find online, or create your own using a site such as
piskelapp.com/

To simplify the process, use my pygamemadeeasy package:

pip install pygamemadeeasy

Required import statement

from pygamemadeeasy import *

Then to create the sprite animation object

animation = SpriteAnimation("animation.png", 32, 24) # each frame is 32 x 24

Use object.next_frame() to return the next frame as an image that is ready to blit. Each time
you call the function it will increment to the next frame, and then sequence back to the start of the set.

window.blit(animation.next_frame(), (x, y))

https://www.youtube.com/watch?v=gT0qmgAauT8
https://www.piskelapp.com/

README.md 1/5/2020

17 / 29

Demo - Basic mario

The following exercise creates a simple Mario walking scene where his "walk" is animated through a
series of cells for the left and right walking as shown

mario-stationary.png
mario-left-animation.png
mario-right-animation.png
mario-background-768p.png

from https://github.com/paulbaumgarten/paulbaumgarten/tree/master/myp-design/game-making/img

The sprite animation runs from functionality in the pygamemadeeasy library. Ensure you have it
installed and import as follows

from pygamemadeeasy import *

Creating an animation first requires creating an animation object called a SpriteAnimation() as
can be seen below. In this case, the 90, 133 indicates the height and width of the individual frames
within the image file.

mario_left_animation = SpriteAnimation("mario-left-animation.png", 90, 133)

Note - The SpriteAnimation() object has been designed to work on PNG files exported from the
Piskelapp website where columns have been set to 1. It may not work properly if you have multiple
columns.

To blit (draw) a frame of the image onto screen use the .next_frame() function. This will
automatically move to the next frame each time it is called.

window.blit(mario_right_animation.next_frame(), (player_x, player_y))

https://github.com/paulbaumgarten/paulbaumgarten/tree/master/myp-design/game-making/img

README.md 1/5/2020

18 / 29

The full demo is here...

import pygame, time, random
from pygame.locals import *
from pygamemadeeasy import *

START GAME CODE ###
pygame.init()
window = pygame.display.set_mode((300,300))
fps = pygame.time.Clock()

Declare colors, fonts, images
mario_right_animation = SpriteAnimation("mario-right-animation.png", 90, 133)

Variables
player_x = 100 # x-value of player
player_y = 100 # y-value of player
quit = False # game still playing while this is True

Main game loop
while not quit:

 # Process events
 for event in pygame.event.get():
 if event.type == KEYDOWN:
 if event.key == K_ESCAPE:
 quit = True

 # Draw graphics
 window.fill(colors.black)

 # Draw the animated sprite
 window.blit(mario_right_animation.next_frame(), (player_x, player_y))

 # Update the window
 pygame.display.update()
 fps.tick(10)
pygame.quit()

README.md 1/5/2020

19 / 29

Demo - Running and jumping mario

This extends the Mario demo so he can walk, run, jump based on your keyboard input.

You are not required to do this demo. It is for information purposes. Check your assigned
tasks below.

If you do choose to code this, you will need to download the following files:

mario-stationary.png
mario-left-animation.png
mario-right-animation.png
mario-background-768p.png

from https://github.com/paulbaumgarten/paulbaumgarten/tree/master/myp-design/game-making/img

import pygame, time, random
from pygame.locals import *
from pygamemadeeasy import *

FUNCTIONS ####

def jump(frame_number):
 """
 Calculate gravity effect for jumping.
 Returns change in y-axis for x-frames. Jumps to a height of 200 pixels and lands again
over a total of 100 frames
 (~20 frames/sec = 5 second process)
 Who ever said quadratics and physics weren't useful!?
 """
 frame_number = float(frame_number) # convert integer to float for
calculation purposes
 delta_y = -(2.0/25.0)*(frame_number**2) + 8.0*frame_number
 return int(delta_y) # turn the decimal float back to an
integer to represent change of pixels

START GAME CODE ###
pygame.init()
window = pygame.display.set_mode((1000,760))
fps = pygame.time.Clock()

Declare colors, fonts, images
background_image = pygame.image.load("mario-background-768p.png").convert_alpha()
mario_left_animation = SpriteAnimation("mario-left-animation.png", 90, 133)
mario_right_animation = SpriteAnimation("mario-right-animation.png", 90, 133)
mario_stationary_image = pygame.image.load("mario-stationary.png").convert_alpha()

https://github.com/paulbaumgarten/paulbaumgarten/tree/master/myp-design/game-making/img

README.md 1/5/2020

20 / 29

arial_60 = pygame.font.SysFont("Arial", 60)

Variables
player_x = 30 # x-value of player
player_y = 400 # y-value of player
quit = False # game still playing while this is True
score = 0 # starting score
floor = 555 # y-value of the floor
gravity = 25 # Gravity speed
falling = True # are we falling??
jumping = False # are we jumping?
jumping_frames = 0 # number of frames we have been jumping
delta_x = 0
sprite_num = 0
sprite_scene =0
Main game loop
while not quit:
 # Process events
 for event in pygame.event.get():
 if event.type == QUIT:
 quit = True
 elif event.type == KEYDOWN:
 if event.key == K_ESCAPE:
 quit = True
 if event.key == K_SPACE:
 if not falling and not jumping: # We can't jump if we are already in the
air
 jumping = True # we are jumping!
 jumping_frames = 0 # start of a new jump
 if event.key == K_LEFT:
 delta_x = -20
 if event.key == K_RIGHT:
 delta_x = 20
 elif event.type == KEYUP:
 if event.key == K_LEFT or event.key == K_RIGHT:
 delta_x = 0
 elif event.type == MOUSEMOTION: ## The mouse has moved
 paddle_x = event.pos[0] ## We only need the x coordinate of the
mouse position

 if jumping:
 player_y -= gravity
 jumping_frames += 1
 if jumping_frames > 10: # We've reached our jump limit, time to
fall down again
 jumping = False
 falling = True
 elif player_y < floor:
 falling = True
 player_y += gravity
 else:
 falling = False
 player_x += delta_x
 # Draw graphics
 window.fill(colors.black)
 window.blit(background_image, (0, 0))
 if delta_x > 0: # moving right
 window.blit(mario_right_animation.next_frame(), (player_x, player_y))
 elif delta_x < 0:
 window.blit(mario_left_animation.next_frame(), (player_x, player_y))
 else:
 window.blit(mario_stationary_image, (player_x, player_y))
 window.blit(arial_60.render(str(score), 1, colors.white), (20, 20))
 pygame.display.update()
 fps.tick(10)
pygame.quit()

README.md 1/5/2020

21 / 29

Your task/s
Do the first demo to get an animated sprite working for yourself.
Rather than doing the second demo, create your own PiskelApp animation, and then create your
own simple demo that uses it.

README.md 1/5/2020

22 / 29

7. Detecting collisions
Pygame has a couple of really handy built in collision detection functions you can use: colliderect
and collidelist are the main two I'll discuss here.

Rectangle
It works by providing the coordinates to two sets of rectangles, and if there is any overlap it will trigger
the collision. We've drawn rectangles using pygame.draw.rect but you can also create rectangle
variables. These can then be used for collision detection as well as drawing on screen (though once
you start using images/sprites you probably won't even draw them).

To create a rectangle variable

my_rect = Rect(x, y, width, height)

To then draw that rectangle use

pygame.draw.rect(window, COLOR, my_rect)

To check if two rectangles overlap (collide) at all, the "if" statement would look like this:

if Rect(x, y, w, h).colliderect(Rect(x, y, w, h)):
 print("There is a collision")

Example code with a couple of rectangle variables would be:

ball = Rect(ball_x, ball_y, 20, 20)
paddle = Rect(paddle_x, 470, 60, 20)

if ball.colliderect(paddle):
 print("Collision detected")

Look back at the "Basics Pong using mousemotion" sample code and you'll spot an example of it
being used.

List of rectangles
This works very similar as colliderect, the difference being that instead of checking if one rectangle is
overlapping another single rectangle, it can check to see if a rectangle is overlapping any items in a list
of rectangles!

This is very useful in a game scenario where you might have multiple enemies, bombs or bullets to
avoid – you can check your player isn't touching any of them in one line of code!

The key difference is that instead of returning True or False, the function will return a number to
indicate which item in the list there is collision with, or -1 if there is no collision.

README.md 1/5/2020

23 / 29

A crude illustration of it's use might look like:

baddies = [
 Rect(0, 50, 50, 50),
 Rect(50, 200, 50, 50),
 Rect(200, 100, 50, 50)
]
me = Rect(75, 25, 50, 50)
if me.collidelist(baddies) >= 0:
 print("Uh oh! A baddie has caught you!")

To see this in use properly, look at Space Invaders in the project starters section. Look for the
comment "Check for collisions between bullets and aliens " and you'll see collidelist in action.

Your task/s
Implement the collision demo that follows.
Make your own personalised modifications to it.

import pygame, time, random
from pygame.locals import *

pygame.init()
window = pygame.display.set_mode((500,500)) # set screen width,height
fps = pygame.time.Clock()

#********** Declare colors, images, sounds, fonts, variables **********
arial_24 = pygame.font.SysFont("Arial", 24)
black = (0,0,0)
red = (255,0,0)
green = (0,255,0)
white = (255,255,255)
quit = False
x,y = 250,250

#********** Main game loop starts **********
while not quit:
 window.fill(black) # Reset the screen to black background
 #********** Process events **********
 for event in pygame.event.get():
 print(event)
 if event.type == QUIT:
 quit = True
 elif event.type == MOUSEMOTION:
 x,y = event.pos

 #********** Calculations **********
 player = Rect(x,y,50,50)
 obj1 = Rect(50,50,50,50)
 blocks = [
 Rect(30,400,40,40),
 Rect(130,400,40,40),
 Rect(230,400,40,40),
 Rect(330,400,40,40),
 Rect(430,400,40,40)
]
 player_color = green
 if player.colliderect(obj1): # Detect collision between one rectangle and
another rectangle
 player_color = red
 if player.collidelist(blocks) >= 0: # Detect collision between one rectangle and a
list of rectangles
 block_num = player.collidelist(blocks)
 player_color = red
 window.blit(arial_24.render(f"Collision with block {block_num}", 1, white),
(100,20))

README.md 1/5/2020

24 / 29

 #********** Update screen **********
 pygame.draw.rect(window, white, obj1)
 for block in blocks:
 pygame.draw.rect(window, white, block)
 pygame.draw.rect(window, player_color, player)
 pygame.display.update() # Actually does the screen update
 fps.tick(25) # Run the game at 25 frames per second

#********** Game over **********
pygame.quit()

README.md 1/5/2020

25 / 29

8. Project starters
I have a set of pre-written code as starters for the following games. The intention is you would use one
of these as the starting point, from where you will then add your own features to the game.

Pong
Snake
Simple platformer
Space invaders
1942
Candy crush
Better platformer

Discuss with me if you feel you are ready one of these.

Your task/s
Get your selected project starter coded and successfully running.

README.md 1/5/2020

26 / 29

9. Design your own game

Task B1: Success criteria
Generate a list of project success criteria that you will use to judge how successful you have been
with the project. Each success criterion should be as specific and measurable as possible. To assist
you in brainstorming your success criteria, you try to create criteria for each of these categories:

Functionality: What will your program do? How will it behave? Under what conditions?
Aesthetics: What will it look like? Sound like? Will there be any movement/animation/colour?
Technology: What will the client require to run it?
Feasibility: What time constraints, resource constraints, knowledge constraints do you face?

Task B2: Design ideas

Original sketches for SPACE INVADERS (1978) characters by Toshihiro Nishikado. (source)

https://www.reddit.com/r/geek/comments/akr1n3/original_concept_sketches_for_space_invaders_1978/

README.md 1/5/2020

27 / 29

Original Donkey Kong, (Donkey Kong, Jumpman/Mario & Pauline) sprite drawings - Shigeru Miyamoto
(~1981) (source)

https://twitter.com/gameanim/status/1076985452903653378

README.md 1/5/2020

28 / 29

Original Mario levels - Shigeru Miyamoto (source)

The above represent some original sketches for classic arcade games. Your task is to create designs
or detailed sketches for your product.

Label key parts so other people can understand your ideas.
You can draw screenshots or storyboards or what you anticipate the final solution may look like.
You may draw sketches or use modelling software if you prefer.
You drawings should be able to be fully understood by others. (the idea being that someone else
could build the app that's in your head based off your drawings).
You are NOT being assessed on your artistic drawing capabilities but your work IS expected to
be neat and have all possible care taken in its presentation. (for instance if a line is supposed to
be straight then use a ruler!)

In general, you should produce at least 3 different designs/sketches.

Annotate your drawings to indicate the function of the various parts of the project. Try to ensure that
accross your diagrams, you cover the following spread of categories:

Functionality
Aesthetics
Technical requirements
Characters (if relevant)
Target market (I drew a character that looks like because I want it to appeal to)
Feasibility

If you need blank templates for your Criterion B design sketches, you can use my Criterion B
Prototype Sketches Template

https://qz.com/429862/the-original-super-mario-game-was-designed-on-graph-paper/
file:///Users/pbaumgarten/repos/paulbaumgarten/myp-design/crit-b-prototype-desktop.pdf

README.md 1/5/2020

29 / 29

Task B3: Design selection
How well do each of your proposed designs satisfy your success criteria from B1?

To adequately address strand B3 you should:

Compare each of your B2 proposals against each of your B1 success criteria.
With the comparison in mind, which of the proposals best solves the problem and why? Are
there any changes you will make to this design to further improve it?
Reference your various elements of your B1 success criteria in your justification.

Task B4: Final design proposal
Discuss the logic of your program? Here are some example bullet points that would describe product
behaviour:

The player starts with 10 health (or 3 lives, or 0 points, or….)
When the up arrow is pressed: Player will jump for a few moments and gradually descent to land
on a platform
When the bullet hits the player: The player loses 5 health (or 1 life, or the game ends...)
When the player touches a treasure chest: The player gains 50 points (or 10 health, or the game
moves to the next level) etc
When the colour sensor sees blue: The left wheel will turn at maximum speed, the right wheel
will stop.

Task C: Create
Submit your Python code to your portfolio.

Task D: Evaluate
The Criterion D deliverable should take the form of a narrated screen-cast video.

Your video needs to include the following:

Write an outline for key points you want to make in your video before recording it (a word by
word script is not necessary).
Demonstrate the achievement of each of your success criteria identified in task B1
Discuss what changes you would make to your product if given more time. This could either be
to better address success criteria not fully completed, or to add enhancements to your product
Within the video, identify who your client (or target audience) for the project was, and discuss
whether you have achieved the original objective identified back in task A1. How has completed
product impacted on your client (or target audience). Perhaps a brief on camera interview with
your client (or a couple of representatives of the target audience).

In order to address this criterion thoroughly, I anticipate most videos to be around 4 or 5 minnutes.

Submit your Video evaluation to your portfolio

