
README.md 5/29/2020

1 / 16

Unit: Cozmo Robotics

Summary
Learn to program the Anki Cozmo robot with Python!

Note: It is highly recommended to have a printed or saved copy of this tutorial available
before you start. Using the Cozmo requires you to connect to it over wifi, meaning your
computer will no longer have access to the internet through your usual network
connection.

Students of mine will be given this as a print out. You should check my website for any
updates/changes @ https://pbaumgarten.com/myp-design/cozmo/

This unit assumes some existing knowledge of Python basics.

Last updated: 02/01/2020

Unit information

MYP item This unit

Statement
of inquiry

Robotic systems are a technical innovation where computers are capable of
functioning in and adapting to a variety of physical environments.

Key
concept

Systems

Related
concepts

Function, Adaptation

Global
context

Scientific and technical innovation

Assessment
objectives

A (inquiring & analysing), B (devising ideas), D (evaluating)

Lesson overviews
12 lessons as follows:

Lesson 1. Connect to Cozmo
Lesson 2. Basic movement
Lesson 3. Detect cliff edge, drive around a tabletop
Lesson 4. Take photo, save photo
Lesson 5. Detect ArUcode markers
Lesson 6. Take action based on ArUcode markers
Lesson 7. Design your own obstacle course
Lesson 8,9,10. Build & program your obstacle course

https://pbaumgarten.com/myp-design/cozmo/

README.md 5/29/2020

2 / 16

Lesson 11. Evaluate your obstacle course

Website
The website for this unit is at https://pbaumgarten.com/myp-design/cozmo

https://pbaumgarten.com/myp-design/cozmo

README.md 5/29/2020

3 / 16

0. Prequisites

Python installed
This assumes you have a recent version of Python installed, typically at least version 3.6

If you don't have it, go to https://wwww.python.org and download it.

When running the installer, make sure you turn on the option to "Add Python to PATH"

I have a video walk through of the process for installing Python and VS Code at

https://pbaumgarten.com/python/install/, or
https://youtu.be/-R6HFLp7tTs

Libraries required
Once you have Python installed, open the command prompt and run the following

pip install pycozmo Pillow ImageToolsMadeEasy

If you get a permissions error with the above, try it again with the --user switch as follows

pip install --user pycozmo Pillow ImageToolsMadeEasy

Basic Python knowledge
This guide assumes a basic familiarity with Python. I have written a quick recap designed for a one
hour lesson should you need it. It is available at:

https://pbaumgarten.com/python/recap/

If you need a more detailed introduction to Python I have a set of detailed tutorials on my website.
Each lesson contains detailed notes, videos and practice exercises. Each lesson is roughly an hour
in length with 9 lessons in "the basics" (though only the first 5 are required for this tutorial).

https://pbaumgarten.com/python/

https://wwww.python.org/
https://pbaumgarten.com/python/install/
https://youtu.be/-R6HFLp7tTs
https://pbaumgarten.com/python/recap/
https://pbaumgarten.com/python/

README.md 5/29/2020

4 / 16

1. Connect to Cozmo
A video walk through of the connection process is available on
YouTube via the QR code or manually, at https://youtu.be/-
k_oiQhBa5o. Alternatively, the steps are as follows...

Sit the Cozmo on it's charger unit which must be powered on
(it doesn't have to be connected to your computer, just usb
power).
On the front screen, Cozmo will display a code similar to the
one displayed.
Open your computer network settings and search for the wifi
connection with Cozmo's name in it. Connect to the Cozmo wifi
using the code on the Cozmo's front screen as the password.
Open VS Code or your preferred Python editor. The following is
a simple program to test your connection is working properly.
It will cause the backlight on the cozmo to turn green for 1
second, then red for 1 second, then off.

You will require these import statements for all Cozmo programs
import time
import math
import pycozmo
from PIL import Image
import ImageTools

Connect to Cozmo
cozmo = pycozmo.Client()
cozmo.start()
cozmo.connect()
cozmo.wait_for_robot()
Do something simple
cozmo.set_all_backpack_lights(pycozmo.lights.blue_light)
time.sleep(1)
cozmo.set_all_backpack_lights(pycozmo.lights.red_light)
time.sleep(1)
cozmo.set_all_backpack_lights(pycozmo.lights.off_light)
Disconnect from Cozmo
cozmo.disconnect()
cozmo.stop()

Your task/s
Install Python and VS Code if you don't already have it
Install the ImageTools and pycozmo libraries
Connect to your Cozmo over wifi
Get the sample test code above working to prove you can connect and control your Cozmo

https://youtu.be/-k_oiQhBa5o

README.md 5/29/2020

5 / 16

Start experimenting with other code

README.md 5/29/2020

6 / 16

2. Basic movement
The following demonstrate some of the commands you can use to control different features of the
Cozmo.

LED commands

The multicolor LED on the back of the Cozmo
cozmo.set_all_backpack_lights(pycozmo.lights.red_light)
cozmo.set_all_backpack_lights(pycozmo.lights.green_light)
cozmo.set_all_backpack_lights(pycozmo.lights.blue_light)
cozmo.set_all_backpack_lights(pycozmo.lights.white_light)
cozmo.set_all_backpack_lights(pycozmo.lights.off_light)

Front facing head light
cozmo.set_head_light(True) # Turn on
cozmo.set_head_light(False) # Turn off

Driving commands

Drive forward at speed 50
cozmo.drive_wheels(lwheel_speed=50.0, rwheel_speed=50.0)

Drive forward at speed 50 for 5 seconds then stop
cozmo.drive_wheels(lwheel_speed=50.0, rwheel_speed=50.0, duration=5.0)

Drive the right wheel (making the robot veer left)
for 2.5 seconds
cozmo.drive_wheels(rwheel_speed=50.0, duration=2.5)

Drive the left wheel forward, right wheel in reverse
(making the robot veer right) ... notice the minus sign!
cozmo.drive_wheels(lwheel_forward=50.0, rwheel_speed=-50.0)

Drive in reverse at speed 50 (notice the minus signs!)
cozmo.drive_wheels(lwheel_speed=-50.0, rwheel_speed=-50.0)

All stop
cozmo.stop_all_motors()

Tilt head up/down

=== Move Cozmo's head ===
Cozmo's head should move in a range from -25 degrees (facing down) to +44 degrees (up).
Python expects the angle to be in radians so it needs converting from degrees.
The angle can be provided as a variable or a number.
angle = 0
cozmo.set_head_angle(math.radians(angle))

README.md 5/29/2020

7 / 16

Raise/lower lifting arm

=== Move Cozmo's lifting arm ===
Cozmo's lifting arm can move in a range from 32mm (fully lowered) to 92mm (fully raised)
Height can be provided as a variable or a number.
height = 90
cozmo.set_lift_height(height)

Your task/s
Using a combination of the above commands, can you make your Cozmo...

Drive in a perfect square of sides 1 meter in length, and sharp 90 degree turns? It should
stop at the spot it started, facing the same way when done.
Go in a perfect circle (diameter at least 50cm), stopping and starting at the same point.

README.md 5/29/2020

8 / 16

3. Detect cliff edge
Cozmo has sensors built in through which it can detect different situations and events. The
following command add_handler tells Cozmo that if a particular event occurs, there is a function
we have written to handle it. In this case, the event is if a cliff edge is detected, and the handling
function is specified in the 2nd parameter as being called on_cliff_detected.

cozmo.add_handler(pycozmo.event.EvtCliffDetectedChange, on_cliff_detected)

... which could look like this when added to a full program ...

... remmeber to add your import statements first ...

Connect to Cozmo
cozmo = pycozmo.Client()
cozmo.start()
cozmo.connect()
cozmo.wait_for_robot()
Add cliff detection
cozmo.add_handler(pycozmo.event.EvtCliffDetectedChange, on_cliff_detected)
Start moving
cozmo.drive_wheels(lwheel_speed=50.0, rwheel_speed=50.0)
Run for 60 seconds
for second in range(60):
 time.sleep(1)
Disconnect from Cozmo
cozmo.disconnect()
cozmo.stop()

So if our main section is going to tell Cozmo to run the on_cliff_detected function, we need to
ensure it actually exists. Here is an example of what it could look like. You can modify yours to do
something different.

def on_cliff_detected(cozmo, state):
 if state:
 print("Cliff detected.")
 # Reverse straight back
 cozmo.drive_wheels(lwheel_speed=-50.0, rwheel_speed=-50.0, duration=1.0)
 # Reversing turn
 cozmo.drive_wheels(lwheel_speed=0.0, rwheel_speed=-50.0, duration=2.8)
 # Drive forward
 cozmo.drive_wheels(lwheel_speed=50.0, rwheel_speed=50.0)

README.md 5/29/2020

9 / 16

There are other handlers you should know about. In addition to detecting a cliff edge, the Cozmo
can also detect when the button on it's top is pressed, or when you pick it up. Examples of how
these work follow...

Detect pressing the button on top of Cozmo...

This handler will trigger when the button on top of Cozmo is pressed
cozmo.conn.add_handler(pycozmo.protocol_encoder.ButtonPressed, on_button_pressed)

Example handler function for button press
def on_button_pressed(cozmo, state):
 if state.pressed:
 print("Button pressed.")
 cozmo.drive_wheels(lwheel_speed=50.0, rwheel_speed=50.0)

Detect when Cozmo is picked up...

This handler will trigger when the robot is picked up
cozmo.add_handler(pycozmo.event.EvtRobotPickedUpChange, on_robot_picked_up)

Example handler function for picked up
def on_robot_picked_up(cozmo, state):
 if state: ## state is set to True if picked up
 print("Picked up.")
 cozmo.stop_all_motors()

Your task/s
a) Can you make a Cozmo drive around a table top without falling off?
b) Make the colour of the light on Cozmo change to indicate if it is going forward, turning, or
in reverse.
c) Make it so Cozmo keeps driving around the table top until you press the button on the
top.

README.md 5/29/2020

10 / 16

4. Take photo, save photo
Your Cozmo has a camera. Admittedly the resolution isn't great, but at least getting it to work is
easy enough. After we enable the camera, we then create another event handler to process the
content of the image we receive.

Setup the camera
cozmo.conn.send(pycozmo.protocol_encoder.EnableCamera()) # See note below
cozmo.conn.send(pycozmo.protocol_encoder.EnableColorImages(enable=True))
Instruct the camera to take a photo
cozmo.add_handler(pycozmo.event.EvtNewRawCameraImage, process_photo, one_shot=True)

Note: Older versions of the pycozmo library required .EnableCamera(enable=True) so
depending on what version of the library you have you may need that.

An example event handling function could look like...

def process_photo(cozmo, image):
 import uuid # additional import required
 filename = str(uuid.uuid1()) + ".jpg" # generate a unique filename
 image.save(filename, "JPG") # save the image as JPG to your project folder
 image.show() # open the image to view on screen

This will create a filename based on the current time so you can save multiple images
without them overwriting with each other.
Notice the cozmo.add_handler() has a one_shot=True parameter. When set to True it will
trigger the camera to take just one photo. When set to False it will take photos continually
(about 15 per second)
The cozmo.add_handler() command does not have to appear with the camera setup
commands. It could be placed in the function that handles another event such as a cliff or
the button.

Your task/s
Modify your table-top driving program so every time it reaches a cliff, the Cozmo takes a
photo of the wonderful view. Upload your code and an example photo to your portfolio.

README.md 5/29/2020

11 / 16

5. Detect ArUco markers
While the view from the Cozmo camera might be nice, it also has a practical purpose. We can use
vision recognition systems to recognise what the Cozmo can see and behave accordingly.

For this exercise we are going to keep it simple and use some ArUco
Markers. Think of ArUco as mini-QR-codes. They are a 2D black and white
block code that are very easy for the vision system to recognise and decode.
There are a couple of different versions, but the one we are using will create
4x4 black and white grids that Python will recognise as being a number
between 0 and 999. This ArUco represents the number 50.

You will need to print your own ArUco labels. You can generate them from
this website http://chev.me/arucogen/ (keep the "dictionary" setting on 4x4). From my trials a
marker of 50mm was detectable by the Cozmo at a distance of approximately 50cm. You will have
to experiment with the sizes you need based on the range you want it to recognise the code.

def process_photo(cozmo, image):
 # Use the ImageTools.get_aruco() function to decode any arUco markers in the image
 markers = ImageTools.get_aruco(image)
 if 70 in markers:
 print("I saw ArUco marker 70")
 if 71 in markers:
 print("I saw ArUco marker 71")
 if 72 in markers:
 print("I saw ArUco marker 72")

cozmo = pycozmo.Client()
cozmo.start()
cozmo.connect()
cozmo.wait_for_robot()
Look straight ahead
cozmo.set_head_angle(0.0)
Take photos continually. Run the process_photo() function on each image.
cozmo.conn.send(pycozmo.protocol_encoder.EnableCamera(enable=True))
cozmo.conn.send(pycozmo.protocol_encoder.EnableColorImages(enable=True))
cozmo.add_handler(pycozmo.event.EvtNewRawCameraImage, process_photo, one_shot=False)
Loop for 60 seconds
stop_at = time.time() + 60
while time.time() < stop_at:
 time.sleep(0.1)
print("Time's up, quitting...")
cozmo.disconnect()
cozmo.stop()

Your task/s

http://chev.me/arucogen/

README.md 5/29/2020

12 / 16

Print a few different ArUco markers of different sizes. Experiment with under what
circumstances Cozmo can read them (angle, lighting, what if something partially obscures
the code?)

README.md 5/29/2020

13 / 16

6. Take action based on ArUcode markers
Make a new copy of your table-top driving code. We're going to experiment with using Cozmo to
detect ArUco markers that change it's behaviour.

a) Start simple: make Cozmo start the table-top program when shown one ArUco marker,
and stop when it sees a different ArUco marker.
b) Attach an ArUco to an object. Have the Cozmo detect the object and drive around it.
c) Attach ArUco markers to two objects, one to trigger a turn left behaviour, the other to
trigger a turn right behaviour.
d) What else can you think of to try with the markers?

README.md 5/29/2020

14 / 16

7. Design your own obstacle course
By now you have experimented with quite a few features of the Cozmo. Design an obstacle course
that you will build for the Cozmo to self navigate from point A to point B.

Your task/s
Create planning drawings for your obstacle course and include those in your portfolio for lesson 7.
You want to strike the balance between making a complex yet achievable obstacle course. You
should work on the basis of having 3 lessons for physically building the course and programming
the Cozmo.

Show your obstacle course ideas to your teacher for approval before proceeding.

README.md 5/29/2020

15 / 16

8,9,10. Build your own obstacle course
Create your obstacle course (~1 lesson) and program your Cozmo to complete it (~2 lessons).

How long does it take your cozmo to capture the flag?

Your task/s
a) Submit a photo of your final obstacle course into your portfolio.
b) Submit your Python code into your portfolio.

README.md 5/29/2020

16 / 16

11. Evaluate your obstacle course

Your task/s
Make a video recording demonstrating the success (complete or partial) of your Cozmo robot...

a) Introduce the obstacle course, outline the different features and what you wanted the
Cozmo to do at each.
b) Show the Cozmo attempting your obstacle course
c) Discuss your level of success. What parts worked well? what did not? What changes would
you make if given more time?

Upload your video to your portfolio.

