YEAR 7

YEAR 8

YEAR 9

Interactive diorama

Systems help organise resources to reduce risk.

Related: Resources

Context: Scientific and Technical Innovation

Technologies: ESP32, Microblocks w motors, servos,

neopixels, buttons, IR etc.

Materials: Card, pine, possible laser cutting or 3D printing

Use the provided **resources** to create a complete self-enclosed **system** in the form of an **interactive diorama** on a theme of interest to the student. Use a combination of electronics and mechanics, block programming and graphic design principles.

Tamagotchi keychain

Designers enhance the form of a product to meet the needs of communities

Key: Communities Related: Form

Context: Identities and relationships (adaptation, form) Tech: Shaper3D, ESP32, LCD, Wifi / BLE, MicroPython

Using the **form** of a wearable or a keychain for your school bag, create a **community** of interactive STC **Tamagotchis**. Use wifi / BLE to meet/socialise with other Tamagotchis nearby to earn life points. Design and 3D print your protective case to your own style and needs.

Smart plant pots 1

The development of sustainable systems positively improves the environment.

Key: Systems

Related: Sustainability

Context: Globalisation and sustainability (human impact on

the environment)
Tech: Shaper3D

Help promote the **sustainability** of increased greenery at home or in our classrooms, by designing a **system** tor an IoT connected **self-watering** pot that nurtures your plant according to it's requirements.

Intelligent robots

Identity can be enhanced by functional community projects

Key: Communities Related: Function

Context: Identities and relationships (Social development,

health, wellbeing and lifestyle choices) Tech: Qtruck, Microbit, Makecode.

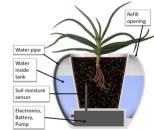
How can **functional** robots contribute to the **community**? Solve the challenges involved with programming functional robots to perform useful tasks. Culminate in conquering the robotic obstacle course.

IoT lamps

Functional products can be developed and adapted using components.

Key: **Development**Related: **Form**

Context: Scientific and technical


innovation (adaption, ingenuity, progress)
Tech: ESP32, MicroPython, Neopixels, Wifi

Using the form provided by your Fo Tan Factor lamp, develop an Internet of Things controlled lamp that you can use your phone to can on / off, set a visual alarm, design pre-programmed colour sequences with the Neopixels.

Smart plant pots 2

Social entrepreneurs can innovate and influence communities.

Key: Communities Related: Innovation

Context: Fairness and development

(social entrepreneurs)

Tech: ESP32, MicroPython, Pump, Moisture sensor,

Temperature sensor, Wifi, IoT

Use your **social entrepreneurial** skills to construct an **innovative**, smart pot planter to nurture your plants.